CAMELID PARASITOLOGY: 2009 EDITION

Parasites

- Internal
 - Strongyles
 - Trichostrongyle spp.
 - Nematodirus spp.
 - Haemonchus spp.
 - Whipworms
 - Trichuris
 - Capillaria spp.
 - Tapeworms
 - Monezia spp.
 - Coccidia
 - Eimeria spp.
 - **■** E. macusaniensis

- Pasture factors
 - Stocking density needs to be <6-8 head/acre</p>
 - Bermuda, brome, other improved pastures, form a dense canopy
 - 155°F in sun-exposed fecal pellets
 - Sparse brush allows for heat and drying of fecal pellets
 - Changes will be reflected in worm burdens in 3-8 weeks

- Animal factors
 - Young animals
 - Genetics
 - 20% of animals harbor 80% of worms [sheep and goats]
 - New purchases, social, weather stresses
 - Immunosuppression of individuals
 - Periparturient rise
 - Large increase in infections from 2 weeks prior to until 8 weeks after delivery

- Drugs factors
 - Drugs are related
 - Rotation of dewormers is not currently recommended
- □ No new drugs are being made
 - There are no "better dewormers"
 - There are no "broad spectrum dewormers"
- □ No drug has ever been or ever will achieve 100% kill
- Drug resistance is a random event
 - But we do speed it up (Meningeal worm prevention)

Plan of Attack

- Deworm frequently? High doses?
 - No Monitor risk
- Ways to monitor
 - Composite sampling of fresh dung
 - Test 10% of each animal group or 10 animals, whichever is greater
 - For dewormer decisions and evaluation
 - Serial monitoring of herd
 - Selective sampling of individuals
 - For individual thin animals

Parasites

- Diagnosis
 - Need QUANTITATIVE and qualitative fecal
 - Direct smear
 - Nitrate flotation media
 - Modified McMaster's technique
 - Sensitive only to 25-50 EPG
 - Not sensitive for Trichuris or Nematodirus
 - Modified Stoll's
 - Sensitive to 5-10 EPG
 - Sensitive for Trichuris, Capillaria, Nematodirus

Comparison of Diagnostic Methods

- □ Fecals from 42 alpacas and 62 llamas [Cebra, Stang JAVMA 2008]
- Direct smear
- Modified McMaster's with sucrose or saline
 - 15 and 60 minutes
- Centrifugation-sucrose flotation procedure
 - Overnight soak
 - □ 10 and 60 minutes

Comparison of Diagnostic Methods

- Centrifugation-flotation
 - Found more of all parasites except small coccidia
 - Small coccidia required flotation for 60 minutes
- Modified McMaster's method
 - Longer time did not really matter
 - Sucrose solution found more Trichuris, E mac, and strongyles than saline McMaster's
 - Saline solution found more Nematodirus and small coccidia than sucrose McMaster's

Parasites

- Diagnostic strategy
 - **Fecal Egg Count Reduction Test (FECRT)
 - Modified Stoll's, deworm, repeat Modified Stoll's in 14 days
 - Used to verify drug efficacy
 - Reduction of EPG by >90%
 - Lower reduction = trouble
 - Resistance
 - Lack of efficacy
 - Dose, route, drug, weight

Parasites

- Diagnostic strategy
 - Larval Development Assay
 - H. contortus most prevalent worm from 2 llama herds
 - Highly ivermectin and benzimidazole resistant
 - UGA and Fort Valley State University [Williamson, Proc. ICHC 2009]
 - 26 camelid farms with nematodes and coccidia 2007-2008
 - H. contortus most common
 - LDA performed in all, FECRT on 4 farms
 - Multiple drug resistance was common
 - LDA predicted susceptibility and FECRT showed resistance
 - Inappropriate dosing?

FAMACHA System

- □ For Haemonchus contortus only
- □ 921 alpacas and llamas [Williams and Storey Proc. ICHC 2009]
- Correlation of eyelid color to anemia
 - 1 and 2 scores not anemic
 - 5 definitely anemic
 - Not as easy to score as sheep and goats

Treatment Failures

- □ Treatment failure ≠ Resistance
 - Insufficient dosage administered
 - Suspensions, spit out, inaccurate weights
 - What is the correct dose?
 - Insufficient drug activity
 - Out of date, improper storage, generics, thin animals
 - Reinfection
 - Fecal flotation inaccuracy
 - 1+, 2+..., larvae vs. adults
 - Incorrect parasite spectrum of activity
 - Nematodirus and Trichuris limited susceptibility to ivermectin
 - Benzimidazoles limited against Trichuris (except oxfendazole and oxi

- Treatment strategies
 - Goal is not no worms, but manageable numbers in animals and on pasture, who are susceptible to treatment if they become a problem
- Refugia
 - A population of susceptible worms on pasture
 - Dilute the population
 - Hybrid vigor

Role of Nutrition

- Immunity closely related to protein nutrition
- Phosphorus inhibits worm establishment
- Cobalt deficiency related to reduced immunity to Gl nematodes
- Adequate copper required for development of immunity against GI nematodes
- Molybdenum addition of 6-10 mg/d reduced worm burdens in lambs
 - Copper deficiency?
 - Increasing jejunal mast cells and blood eosinophils

Eimeria macusaniensis

Eimeria macusaniensis infection in 15 llamas and 34 alpacas

- Cebra et al, JAVMA 2007
- Animals between 3 week and 18 years old with fecal oocysts or intestional coccidial stages morphologically consistent with E. macusaniensis
- Clinically, many were severely affected with weight loss,
 circulatory shock and diarrhea
- 15 of the 30 treated animals died or were euthanized
- Severity of disease related to infective dose of oocysts, host immunity and other factors

Coccidia Life Cycle

- Ingestion of a sporulated oocyst
- Release of sporozoites
- Invasion of epithelial cells of the intestinal villi
- Asexual multiplication of the organism
- Destruction of the cells and release of many more organisms
- Repeat

Coccidia Life Cycle

- Sexual reproduction occurs in the lower GI tract
- Oocysts passed in the feces
- Sporulate to become infective in the environment
- The infective stage of this parasite is in the pasture!

E. mac Oocyst Infectivity

- □ Alpaca and guanaco E. mac oocysts [Jarvinen J Parasit 2008]
- ☐ Stored 41-84 months
- □ Infected 4/4 llamas
 - Prepatent 36-41 days; patent 38-55 days
- 3 llamas and 1 alpaca fed 1000 oocysts stored 3 months
 - □ Llamas: prepatent 33-34 days; patent 14-20 days
 - Alpacas: prepatent 58 days; patent 1 day

E. mac Diagnostics

- Flotation in high SG solutions, prolonged flotation
 1.27-1.33
- \square Blood ELISA high prevalence = \square + rate
- □ Fecal PCR DNA shed during prepatent phase
- Impression smears of intestine
- Histopathology

E. mac Therapy

- Supportive care as indicated by case
- Sulfonamide antibiotics
- Amprolium
- Triazinetriones (includes ponazuril, toltrazuril)
- Intraluminal therapy may have limited use due to lamina propria invasion

E. mac Therapy

- Sulfas and amprolium best against early stages
 - May not see immediate drop in fecal oocysts
- Triazinetriones effective against all stages
 - Decrease shedding
 - Relatively safe
 - Some have voiced concern about teratogenic risks
 - Prolonged exposure in rodents and rabbits has led to bony defects

Take Home Messages

- Perform routine fecal egg counts at a laboratory that does lots of camelid fecals
 - FECRT currently recommended
- Target deworm only when animals need it and only animals that need it
- Watch your management
 - Stocking density
 - New additions

